External and internal elements of a matroid basis
نویسندگان
چکیده
منابع مشابه
g-Elements of matroid complexes
A g-element for a graded R-module is a one-form with properties similar to a Lefschetz class in the cohomology ring of a compact complex projective manifold, except that the induced multiplication maps are injections instead of bijections. We show that if k(∆) is the face ring of the independence complex of a matroid and the characteristic of k is zero, then there is a non-empty Zariski open su...
متن کاملThe Topology of the External Activity Complex of a Matroid
We prove that the external activity complex Act<(M) of a matroid is shellable. In fact, we show that every linear extension of LasVergnas’s external/internal order <ext/int on M provides a shelling of Act<(M). We also show that every linear extension of LasVergnas’s internal order <int on M provides a shelling of the independence complex IN(M). As a corollary, Act<(M) and M have the same hvecto...
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولA taxonomy of external and internal attention.
Attention is a core property of all perceptual and cognitive operations. Given limited capacity to process competing options, attentional mechanisms select, modulate, and sustain focus on information most relevant for behavior. A significant problem, however, is that attention is so ubiquitous that it is unwieldy to study. We propose a taxonomy based on the types of information that attention o...
متن کاملExternal and Internal Relations ∗
In the index to Appearance and Reality (First Edition) Mr. Bradley declares that all relations are “intrinsical”; and the following are some of the phrases by means of which he tries to explain what he means by this assertion. “A relation must at both ends affect, and pass into, the being of its terms” (p. 364). “Every relation essentially penetrates the being of its terms, and is, in this sens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1998
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(95)00332-q